Influence and Correction from the Human Body on the Measurement of a Power-Frequency Electric Field Sensor
نویسندگان
چکیده
According to the operating specifications of existing electric field measuring instruments, measuring technicians must be located far from the instruments to eliminate the influence of the human body occupancy on a spatial electric field. Nevertheless, in order to develop a portable safety protection instrument with an effective electric field warning function for working staff in a high-voltage environment, it is necessary to study the influence of an approaching human body on the measurement of an electric field and to correct the measurement results. A single-shaft electric field measuring instrument called the Type LP-2000, which was developed by our research team, is used as the research object in this study. First, we explain the principle of electric field measurement and describe the capacitance effect produced by the human body. Through a theoretical analysis, we show that the measured electric field value decreases as a human body approaches. Their relationship is linearly proportional. Then, the ratio is identified as a correction coefficient to correct for the influence of human body proximity. The conclusion drawn from the theoretical analysis is proved via simulation. The correction coefficient kb = 1.8010 is obtained on the basis of the linear fitting of simulated data. Finally, a physical experiment is performed. When no human is present, we compare the results from the Type LP-2000 measured with Narda EFA-300 and the simulated value to verify the accuracy of the Type LP-2000. For the case of an approaching human body, the correction coefficient kb* = 1.9094 is obtained by comparing the data measured with the Type LP-2000 to the simulated value. The correction coefficient obtained from the experiment (i.e., kb*) is highly consistent with that obtained from the simulation (i.e., kb). Two experimental programs are set; under these programs, the excitation voltages and distance measuring points are regulated to produce different electric field intensities. Using kb = 1.9094, the corrected measurement of electric field intensity can accurately reflect the original environmental electric field intensity, and the maximal error is less than 6% in all the data comparisons. These results verify the effectiveness of our proposed method.
منابع مشابه
The effect of high frequency electric field on enhancement of chondrogenesis in human adipose-derived stem cells
Objective(s):Osteoarthritis (OA) is globally one of the most common diseases from the middle age onwards. Cartilage is an avascular tissue therefore it cannot be repaired in the body. Conservative treatments have failed as a good remedy and cell therapy as a decisive cure is needed. One of the best and easily accessible cell sources for this purpose is adipose-derived stem cells which can be di...
متن کاملطراحی و ساخت دستگاه اندازه گیری شدت میدان های الکتریکی و مغناطیسی به منظور ارزیابی سلامت شاغلین و مردمِ در معرض این میدان ها
In the extremely low frequency range (3 to 300 Hz), the intensities of electric and magnetic fields increase with increasing voltage and current. If the intensities of electric and magnetic fields are high compared with standard exposure limits, they can have harmful effects on human health. In the vicinity of power lines and high voltage power stations, the intensities of these fields are usua...
متن کاملDevelopment of a free anthropomorphic voxel model of human body for wide-band computational electromagnetics dosimetry
To calculate and evaluate wave scattering and penetration of electromagnetic waves in different biological tissues it is necessary to use a realistic model of the human body, with all tissues resolved and separately assigned with appropriate electric/magnetic properties. We report the development of a realistic 3D whole-body human model that has been adapted for simulation in CST software, cont...
متن کاملAssessment of Extremely Low Frequency (ELF) Electric and Magnetic Fields in Hamedan High Electrical Power Stations and their Effects on Workers
Introduction: Public and occupational exposure to extremely low frequency (ELF) electric and magnetic fields induced by electrical equipment is a significant issue in the environment and at the workplace due to their potential health effects on public health. The purpose of this study was assessment of the electric and magnetic fields intensities and determination of mental and psychological ef...
متن کاملPhase Angle Measurement in Healthy Human Subjects through Bio-Impedance Analysis
Objective(s)Bioelectrical impedance is the measure of impedance of the body. Impedance consists of electric resistance and reactance. Phase angle (PA) is the tan value of the ratio of reactance versus electric resistance. PA depends on cell membrane integrity and on body cell mass. There exists a correlation between PA values and body cell mass.The objective of this study was to compare the PA ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2016